딥러닝&MLOps
딥러닝, 이미지 처리 및 자연어 처리 완전 정복!
교육과정의 개월수를 선택하여 세부과정을 볼 수 있습니다.
프로그래밍과 데이터 기초
- python 기초 - 함수 - python 기초 - 람다 - python pandas
- python numpy - Database - mysql 쿼리작성 및 활용, python 연동 - 웹 크롤링 : 동적,정적
- 웹 크롤링 : api 이용 (공공기관, 네이버, 카카오) - 인공지능을 위한 수학 : 선형대수학
- 인공지능을 위한 수학 : 미분 - 라이브러리를 사용하지 않고 파이썬으로 구현하는 회귀
데이터분석과 머신러닝&딥러닝
● 탐색적 데이터 분석 - 데이터 시각화 및 분석 - 패턴, 이상치(outliers), 상관관계 탐색 - matplotlib, seaborn ● 머신러닝 - 분류 - 로지스틱 회귀: 이진 분류 문제에 로지스틱 회귀 적용. - 결정 트리: 의사결정 나무를 사용하여 데이터 분류. - k-NN(K-최근접 이웃): k-NN 알고리즘을 통해 가까운 데이터 포인트로 분류." ● 머신러닝 - 회귀 - 선형 회귀(Linear Regression): 단순 및 다중 선형 회귀 적용. - 릿지(Ridge) 회귀: 정규화를 사용한 선형 회귀. - 라쏘(Lasso) 회귀: 변수 선택을 위한 회귀 기법. - 다항 회귀(Polynomial Regression): 비선형 데이터를 위한 다항 회귀."
● 머신러닝 - 비 지도 학습 - 군집 - DBSCAN ● 머신러닝 - 앙상블 - 배깅(Bagging) - 부스팅(Boosting) ● 머신러닝 - 최신 트랜드(논문 검색 및 구현)
● 딥러닝을 위한 기초 신경망 개념 및 파이썬을 이용한 구현 - 다층 퍼셉트론(MLP): 여러 개의 은닉층을 가진 신경망 구조 설계." ● 딥러닝 ANN,CNN - 뉴런, 입력층, 은닉층, 출력층의 구성 이해 - ANN 모델의 성능을 평가하고 개선 방법 탐색 - CNN의 구조를 이해하고 이미지 분류 모델을 구현
● 딥러닝 RNN 및 시계열 데이터 다루기 - RNN의 구조와 LSTM의 개념 - 시계열 데이터의 특징 - 시계열 데이터셋 로드 및 전처리 - 모델에 적합하게 데이터셋 변환 - RNN/LSTM 모델 구축 - 학습 및 예측을 통해 시계열 데이터를 분석 ● 딥러닝을 활용한 MLOps - MLOps의 개념 및 머신러닝 모델 생애 주기 - 환경 설정 및 데이터 전처리 - 딥러닝 모델 개발 및 Git 및 DVC를 이용한 버전 관리 방법 - Flask 또는 FastAPI를 통한 모델 배포 - Prometheus 및 Grafana를 사용한 성능을 모니터링
이미지 분류 및 디텍팅
● 비전 트랜스포머 (Vision Transformer, ViT) - 트랜스포머를 이미지 분류에 적용한 최신 기술 - CIFAR-10 데이터셋 다운로드 및 전처리 - TensorFlow 또는 PyTorch를 사용한 전 트랜스포머 아키텍처 구현 - 이미지 패치 생성 ● clip을 이용한 이미지 - 텍스트 매칭 - Hugging Face의 Transformers 라이브러리를 사용한 CLIP 모델 로드 - 이미지와 텍스트 인코딩 및 유사성 측정 ● Neural Style Transfer (스타일 트랜스퍼) - 스타일 트랜스퍼 알고리즘 구현
● GAN(Generative Adversarial Networks) - 본 GAN 아키텍처를 구현하여 생성기(Generator)와 판별기(Discriminator) 정의 - MNIST 또는 CIFAR-10 데이터셋을 사용한 모델훈련 ● DALL-E와 텍스트에서 이미지 생성 - DALL-E 모델을 로드 및 이미지 생성 코드 작성 실습 ● Segment Anything Model (SAM)을 활용한 객체 세그멘테이션 - SAM 모델을 로드하고, 다양한 이미지에 대해 객체 세그멘테이션을 수행하는 코드를 작성 - 이미지에서 객체를 세그멘트하고 마스크를 생성하는 방법을 구현
● YOLO와 DeepSORT로 실시간 객체 추적 - 미리 훈련된 YOLO 모델로드 및 객체를 탐지하는 코드 작성 - 탐지된 객체에 바운딩 박스를 표시하는 방법을 구현 - DeepSORT 알고리즘과 YOLO의 탐지 결과를 바탕으로 실시간 객체 추적 기능 구현 - 객체 추적 결과를 시각화 및 객체 추적 성능 평가 - 여러 객체 동시 추적 실험 및 결과 분석 ● 이미지 슈퍼 해상도 (Super Resolution) - SRCNN 또는 GAN 기반의 슈퍼 해상도 모델 구현 - 낮은 해상도 이미지를 고해상도 이미지로 생성하는 코드 작성
● 동영상 속 객체 디텍팅과 세그멘테이션 - 모델 통합 후 동영상에서 객체의 픽셀 단위 마스크를 생성 - 원본 비디오에 오버레이 후 결과 시각화 ● 증강현실(AR) 기초 - MediaPipe를 활용한 손 인식 및 추적 - Google의 MediaPipe를 활용해 손 인식 및 추적 기술 구현
자연어 처리
● 자연어 처리의 기초와 기본 개념 - NLP의 중요성과 활용 사례 (챗봇, 번역기, 텍스트 분석 등) ● 단어 표현과 임베딩 - Word2Vec을 통한 단어 벡터 학습 과정 ● 문장 및 문서 표현 - Sentence Embedding: 평균 벡터와 TF-IDF 기반 표현 - 순환 신경망(RNN) 및 LSTM
● 자연어 처리 응용 모델 -어텐션 메커니즘(Attention Mechanism) - 트랜스포머(Transformer) 모델 ● 자연어 처리 응용 분야 - 질의응답 시스템(Q&A System)과 챗봇 ● 감정 분석과 요약 - 전통적인 기법: TF-IDF, PageRank 기반 알고리즘 - 딥러닝 기반 요약 모델: Seq2Seq, Transformer
● 문법 교정 및 정보 추출 - 언어 모델을 활용한 자연어 생성 (NLG) - GPT 기반의 텍스트 생성 응용 ● 최신 트렌드 - 멀티모달 - 지식 그래프와 NLP
● 정보 추출(Information Extraction) - 엔티티 인식(Named Entity Recognition, NER) ● 정보 추출 알고리즘 - CRF (Conditional Random Field) - 트랜스포머 기반 정보 추출 모델
AI 활용 어플리케이션 구현
● 리눅스 설치 및 기본 명령어 - 기본 명령어(예: ls, cd, mkdir, rm) 학습 - 파일 및 디렉터리 관리 방법 ● 도커 기본 명령 어 및 활용 - 도커 설치 후 기본 명령어 및 컨테이너 관리 방법을 학습 - Dockerfile 작성 및 사용자 정의 이미지를 만들고, 컨테이너 생성하는 과정 실습 - 도커 컴포즈를 활용한 멀티 컨테이너 애플리케이션 구성 및 관리 ● 쿠버네티스를 활용한 도커 컴포즈 - 쿠버네티스 클러스터 설정 및 기본 개념 - 도커 컴포즈 파일 변환 및 애플리케이션 정의 - kubectl 명령어를 사용한 Kubernetes에 애플리케이션 배포 및 모니터링
● 스파크를 이용한 데이터 수집 및 적재 - Apache Spark 환경 설정 및 기본 개념 이해 - 다양한 데이터 소스를 통한 데이터를 수집 및 프레임 변환 - 다양한 형식으로 수집데이터 적재 및 저장 ● MLops 를 이용한 모델링 자동화 - MLOps의 기본 개념을 이해 - CI/CD 파이프라인 구축 및 모델 개발 및 배포 자동화 실습 - 모델링 자동화 도구를 활용한 데이터 준비, 모델 학습 및 평가 - 모델 버전 관리 및 배포 자동화를 통한 실제 환경에서 모델 운영 방법
● Devops를 이용한 배포 자동화 - Docker&Kubernetes 활용한 애플리케이션 컨테이너화 및 자동 배포 ● streamlit 또는 flask를 활용한 서비스 구현 - Streamlit 또는 Flask의 기본 개념을 이해 - 개발 환경 설정 및 간단한 웹 애플리케이션 구축 - 사용자 입력 처리 및 데이터 시각화 - 머신러닝 모델 예측 결과 표시 기능 구현 - 구현된 서비스 로컬 서버에서 실행 및 배포 방법 학습
● 장고의 핵심 기능 이해 - 장고 프레임워크의 기본 구조와 핵심 개념 이해 - ORM을 사용한 데이터베이스 모델 정의 - CRUD 기능 구현 및 데이터베이스와의 상호작용 - 웹 애플리케이션의 기능 확장 방법 ● 머신러닝 훈련과 serverless 배포 - Scikit-learn 또는 TensorFlow를 사용해 머신러닝 모델 훈련 및 평가 - Flask를 이용해 훈련된 모델을 API로 변환하고, 로컬 서버에서 실행하는 방법 학습 - PaaS를 사용한 Flask 애플리케이션 배포 - 외부 요청 처리 및 예측 결과를 반환 기능 구현
더보기
더보기
더보기